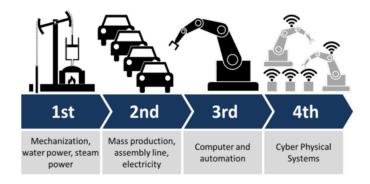
Smarter Manufacturing with SEMI Standards: Practical Approaches for Plug-and-Play Application Integration

17th European Advanced Process Control And Manufacturing (APC | M) Conference Dublin, Ireland April 10-12, 2017

Alan Weber - Cimetrix Incorporated

Outline


- What is "Smart Manufacturing?"
- Importance of equipment models
- SEMI Standards evolution
- Thoughts on "plug and play"
- Factory application examples
- Conclusions

5

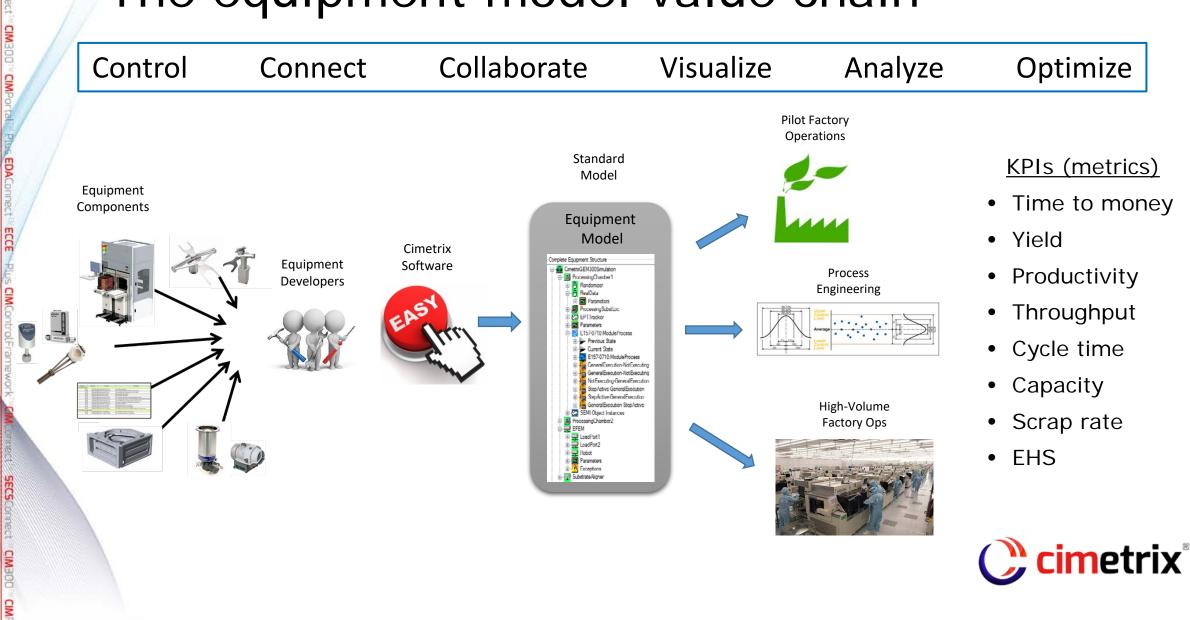
What is "Smart Manufacturing?" From Industry 4.0 Wikipedia...

- "... cyber-physical systems monitor physical processes, create a virtual copy of the physical world and make decentralized decisions.
- Over the Internet of Things, cyber-physical systems communicate and cooperate with each other and with humans in real time..."

Components of a Smart Factory Attributes of all these connected "things"

- Discoverable
- Autonomous
- Model-based
- Secure
- Self-monitoring
- Easy to use
- Compact
- Standards-based

Imagine the collaborative behavior that could emerge !


Importance of equipment models Most important Smart Factory data source

- Equipment models are useful
 - Help understand equipment and process behavior
 - Improve communication with suppliers
- Explicit, standard models are especially useful
 - Support generic applications across equipment types
 - Enable performance benchmarking within/among fabs
- Events and associated data offer untapped benefit
 - Time lost can never be recovered
 - Time is the ultimate unifying concept
- Modeling principles developed for the EDA standards apply equally well to GEM equipment

The equipment model value chain

SECSCO

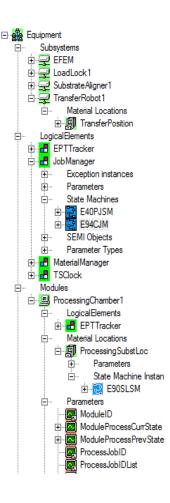
Evolution of equipment models Referenced in SEMI standards

Natural language analogy...

- SECS-I vocabulary (data items)
- SECS-II grammar (streams/functions)
- GEM sentences (capabilities)
- GEM300 conversations (scenarios)
- EDA improv theatre (dynamic DCPs)
- E164 improv theatre with a point (common model)
- <tbd> spontaneous flash mob (IIoT, ...)

Model structure examples *The good, the bad, and the ugly*

• Structure matches tool organization


CIMBOO

CIMP

EDA

- Clear naming convention for all elements
- Complete coverage of important tool behaviors
- Consistent with applicable industry standards

Model structure examples *The good, the <u>bad</u>, and the ugly*

- Structure is completely flat or excessively deep
- Opaque or inconsistent naming conventions
- Incomplete/poor coverage of important tool behaviors
- Partial implementation of industry standards

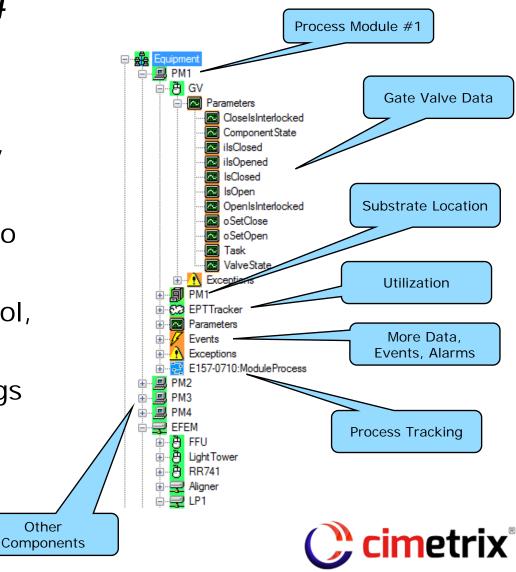
Tool				
SV	DV	CE	EC	
SV1	DV1	CE1	EC1	
SV2	DV2	CE2	EC2	
SV3	DV3	CE3	EC3	
SV4	DV4	CE4	EC4	
SV5	DV5	CE5	EC5	
SV6	DV6	CE6	EC6	
SV7	DV7	CE7	EC7	
SV8	DV8	CE8	EC8	
SV9		CE9	EC9	
SV10		CE10	EC10	
SV11		CE11	EC11	
SV12		CE12	EC12	
SV13		CE13	EC13	
SV14		CE14	EC14	
SV15		CE15		
SV16		CE16		
SV17		CE17		
SV18		CE18		
SV19				
SV20				
SV21				
SV22				

SV23

Model structure examples The good, the bad, and the <u>ugly</u>

- No apparent structure, no resemblance to tool
- No apparent naming convention
- Indeterminate coverage of tool behavior
- Haphazard implementation of industry standards

Standard metadata model benefits First specified by SEMI E164


Other

 Model structure exactly reflects tool hardware organization

 \sum

CIM

- Complete description of all potentially useful information in the tool
- Always accurate, always available no additional documentation required
- Common point of reference among tool, process, and factory stakeholders
- Source of unambiguous identifiers/tags for database [auto] configuration
- Enables "plug and play" applications

SEDD – SECS Equipment Data Dictionary SEMI E172 highlights

• Purpose

- Describe an equipment's SECS interface in a format that is both human- and computer-readable
- Replace vendor-specific electronic formats (typically multitab Excel spreadsheets at best) with true industry standard
- Benefits
 - Fabs can streamline equipment integration software development
 - OEMs can adopt standard rather than creating their own
 - Use broadly available software tools to create and manage

E172 is for GEM what E120/E125 is for EDA/Interface A !

SEDD – SECS Equipment Data Dictionary Schema and examples

in

ECS(IO)

CIM300

CIMPOT

EDAConnect

ECCE

Plus

CIMCo

SECS

CIM300

Equipment model structure Embedded in <source> elements

SECSConnect^{III} CIM300

CIMPor

EDAConnect

ECCE

Plus

CIMCo

SEC2COL

CIMBOD

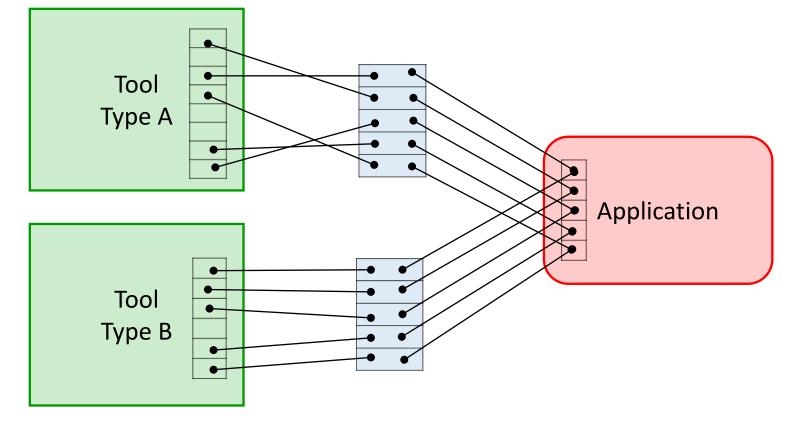
🖳 HotPlate 🖥 👌 MFC300 Parameters MFCFlowRate <CollectionEvent> ⊟--<CEID>2046</CEID> Bot Plate Exceptions ÷ <CENAME>MFC:NoState-MFCOff</CENAME> <VALIDDVS> E TC300 🗄 🔁 TC300 <VID>0</VID> - Parameters </VALIDDVS> ⊞ A UpstreamValve RampRate Temperature TempSetpoint <StateTransition> Downstream Valve <StateModel>MFC</StateModel> ÷. 🧖 HotChuck <TransitionID/> Image: Bernacker Bernacker Exceptions <PreviousState>NoState</PreviousState> EFEM Software Modules <NewState>MFCOff</NewState> 😔 LoadPort1 </StateTransition> Parameters LoadPort1Load <Description>MFC is initialized</Description> Exceptions Ė٠ - Parameters <Source>TrackSvs404/HotPlate/MFC300</Source> E157-0710 ModuleProcess ÷ - Material ID - Material ID </CollectionEvent> 🗄 🔁 Hood LoadPort 1FIMS PinPosition ÷.... E2 EPTTracker i TemperatureCondition Parameters 🔜 Coater ÷ Events ÷ 🖵 TransAm 300 Exceptions <StatusVariable> E87-0709:LoadPortTransfer <SVID>7134</SVID> ÷ 🔫 VacuSys8000 E87-0709:LoadPortReservation <SVNAME>PortTransferState1</SVNAME> ÷ 🚽 EFEM E87-0709:LoadPortCarrierAssociation <Format>PortTransferStateEnum</Format> 🗄 🔂 EPTTracker <Description>Current transfer state of this load port. E87-0709:AccessMode unsigned integer (SECS-II code 51). The enumeration val -82 JobManager Ė 😳 Material Manager E87.1-0709 Table 4.</Description> - Parameters - 🔁 Material Manager Ė <Source>TrackSys404/EFEM/LoadPort1</Source> Events Parameters ÷۰ Exceptions <SEMIStandard>E87-0709</SEMIStandard> </StatusVariable> Ē٠ Events Ė٠ Exceptions Substrate, E90-0707 Attributes E Carrier, E87-0709 🗄 🔂 Substrate, E90-0707 E90-0707:SubstrateObject E90-0707 E90-0707:SubstrateObject 🗄 🌆 NoState-Substrate Software Modules ÷ 🗄 🔚 Substrate-No State <StateTransition> Substrate-No State ÷ - Parameters <StateModel>E90-0707:SubstrateProcessing</StateModel> E90-0707:SubstrateTransport <TransitionID>11</TransitionID> Events Ė E90-0707:SubstrateProcessing <PreviousState>NeedsProcessing</PreviousState> ÷ Exceptions E90-0707:SubstrateReadingStatus <NewState>InProcess</NewState> E30-0307:Control ÷ </StateTransition> E SubstLoc, E90-0707 E30-0307:Processing <Description>SubstrateID specified by variable; Substrate starts Ė Sclock <Source>TrackSys404</Source> <SEMIStandard>E90-0707</SEMIStandard> </CollectionEvent>

C cimetrix

Thoughts on "plug and play" In the context of Smart Manufacturing

- What is it?
 - Application integration concept

- Equipment directly supports application capability without additional programming or configuration
- Applications can make assumptions about semantics of tool data (i.e., about what things mean)
- Who benefits and how?
 - Factory customers greatly reduce application development/integration cost and time to market because of commonality across equipment types



Achieving application "plug and play" Using "connectors" to map SEDD model elements

CIMBOOT CIM

EDACO

SECS

Plug and play application integration Example tool data required (1)

CIMBOD CIM

Application	Tool Data Required
OEE (Overall Equipment Effectiveness)	Transition events and status codes sufficient to classify equipment states for all time periods
Intra-tool material (substrate) tracking	Material tracking events; material location state indicators and state change events
Process execution tracking	Start/stop events for all processing modules; recipe step indicators and step change events for all processing modules that support multi-step recipes
WTW (wait time waste) analysis (aka Product Time Measurement)	The combination of events required for the intra-tool material flow and process execution tracking applications (see above) and context data required to classify material states for all time periods (see the SEMI E168 Product Time Management standard for a deeper explanation)
Time-based PM (Preventative Maintenance)	Run timers at the FRU (field replaceable unit) level
Usage-based PM	Usage parameters and accumulators appropriate for each FRU, such as time-in-state, execution cycles, fluid flow rates, consumables flow rates, power consumption, etc.
Condition-based PM	Meaningful "health indicators" for each FRU
FDC (Fault Detection and Classification)	Equipment/process parameters required by specific fault models and associated context information (this is difficult to do completely because most FDC models are "trained" with knowledge of "good" and "bad" runs, which is not known to the OEM a priori)

Plug and play application integration Example tool data required (2)

CIMBOO

SIN

Application	Tool Data Required
Equipment configuration monitoring	Vector of important equipment constants with expected values and acceptable ranges; may need to support multiple sets, if the values are setup-dependent. Designed to catch human error resulting from operator manual adjustments.
Component fingerprinting	Performance parameters for key equipment mechanisms, including command/response signals at the sensor/actuator level
Static job scheduling	Setup and execution times per product/recipe combination and current setup information
Real-time job dispatching	Estimate of current job completion time; estimate of completion time for all material queued at the equipment
Factory cycle time optimization	Material buffer contents, job queue information
Real-time dashboard	Equipment/component production status indicators
Equipment failure analysis	Meaningful alarm/fault codes and recent history/statistics
Remote recipe selection	Recipe directory with meaningful header information (version #, checksum, etc.) to support reliable selection
Recipe verification	Checksum calculation spec to compare equipment-resident recipe with host version
Run-to-run control	Identification of recipe adjustable parameters and commands to remotely update them

Substrate tracking SEMI E90 state machines and model content

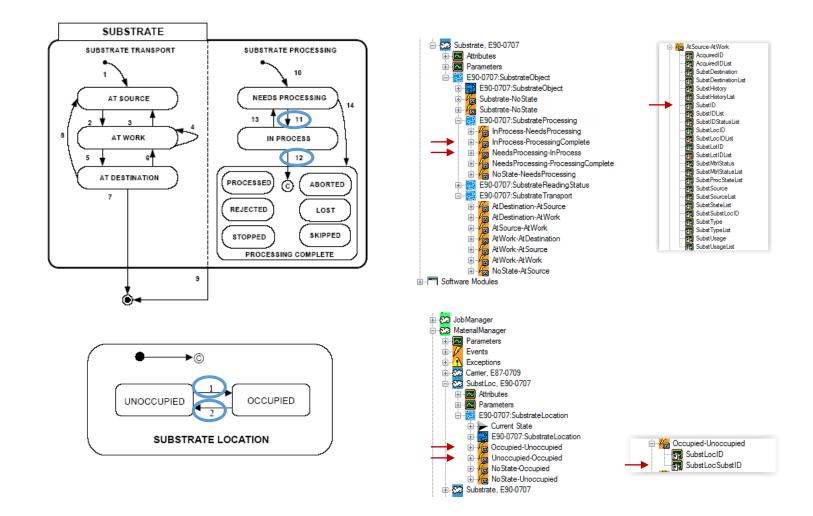
SECSConnect

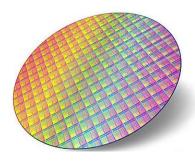
CIM300

CIMPor

EDAConnect

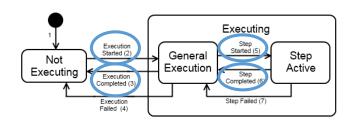
ECCE


Plus


CIMCo

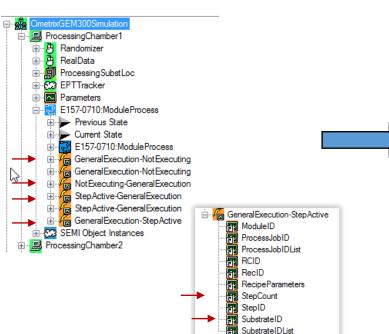
SECS

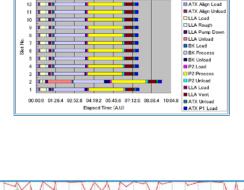
CIMBOD


CIM

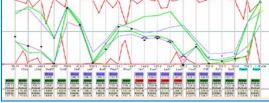
Process execution tracking E157 state machine, model content, and results

CIM300


CIMP


EDA

ECCE


2

SEC2

Gantt Chart (Ovole Time)

Conclusions

- Models help components of a Smart Manufacturing system understand one another
- Models have been at the core of SEMI's Information and Control standards for decades
- The sophistication of these models is now sufficient to support "plug and play" application integration
- Industry standard models can greatly reduce factory application development/integration cost
- Models will play an increasingly important role as the number and variety of components multiply

