Traditional Chinese websiteSimplified Chinese website

Industry News, Trends, and Technology, and Standards Updates

SEMICON Taiwan wrap-up

Posted by Alan Weber: Vice President, New Product Innovations on Sep 21, 2017 10:45:00 AM

semicon_Taiwan.jpg

As predicted, Cimetrix had a very busy and fruitful week (September 11-15) in Taiwan. In addition to hosting numerous customers, prospects, and friends at our booth, Cimetrix made multiple technical presentations focused on Smart Manufacturing, both at the show and at the eMDC Conference in Hsinchu. Two of these were jointly presented with Mark Reath of GLOBALFOUNDRIES. Use the links at the bottom of this post if you’d like a copy of this material.

semitaiwan_wrapup1.jpgsemitaiwan_wrapup2.jpg

semitaiwan_wrapup3v1.jpg

In addition to our participation in these technical events, Cimetrix demonstrated the new Cimetrix EDATester™ product to a number of factory customers who now need a validated method for verifying incoming equipment compliance to the SEMI Equipment Data Acquisition (EDA) suite of standards. The timing for this product is ideal, based on the increased rate of adoption for these standards we have seen in Taiwan. 

Given the industry’s current momentum and near-term outlook, the mood in Taiwan is overwhelmingly positive, and the trade show almost had a celebratory quality to it. Fittingly, the Leadership Gala Dinner held Wednesday night was a feast for all the senses, from the food to the entertainment to the array of dignitaries who attended. 

semitaiwan_wrapup4.jpgsemitaiwan_wrapup5v1.jpg

For the second year in a row, President Tsai attended and expressed her gratitude for the industry’s role in advancing the quality of life across the nation and her administration’s unwavering support for its continued prosperity. Dr. Nicky Lu, one of Taiwan’s well-known business and technology icons, was honored with the industry’s most prestigious Leadership Award, and shared his personal perspective on some of the exciting semiconductor-enabled products now in the works. 

semitaiwan_wrapup6edit.jpg

Dr. Lu went into even more depth about semiconductor technology evolution in his keynote address for the eMDC Conference (Joint Symposium of e-Manufacturing & Design Collaboration Symposium 2017 and ISSM 2017) on Friday, outlining a powerful vision that he’s labelled as “HIDAS: Heterogeneous Integrated Design/Architecture/System for Silicon-Centric Nano-System in Si4.0” – if you want to know more, you’ll want to contact him directly!

semitaiwan_wrapup7.jpg

All in all, is was a great week to be in Taiwan, especially since Typhoon Talim decided to take a turn to the north without dampening the spirit of SEMICON. Please contact us with any questions, and we look forward to seeing you at future industry events.

Device Scaling vs. Process Control Scaling: Advanced Sensorization Closes the Gap

Smarter Manufacturing through Equipment Data-Driven Application Design

Smart Manufacturing Requirements for Equipment Capability and Control

Topics: Events, SEMICON, SEMICON Taiwan, Smart Manufacturing

Direct Dashboard Support: Episode 5 in the “Models in Smart Manufacturing” Series

Posted by Alan Weber: Vice President, New Product Innovations on Sep 13, 2017 10:30:00 AM

The definition for a traditional dashboard is fairly simple—“the panel facing the driver of a vehicle or the pilot of an aircraft, containing instruments and controls”—and well understood by anyone with much time behind the wheel.

EDAModels5.1.jpg

However, information technology dashboards in a business context take a few more words to describe. From Wikipedia, “dashboards often provide at-a-glance views of KPIs (key performance indicators) relevant to a particular objective or business process (e.g., sales, marketing, human resources, or production).” An example of such a dashboard for a single manufacturing process follows.

EDAModels5.2.png

Although only recently popularized by commercial BI (business intelligence) software packages, dashboard-style display technology has been around a long time. Specifically, the PLC (programmable logic controller) industry saw early on that the PC (personal computer) was an ideal user interface platform for machine operators, providing what most would call today an interactive “dashboard” for a piece of equipment or portion of a manufacturing process. PLCs were originally designed as solid-state replacements for the relay panels used for sequence control for small- to medium-sized manufacturing equipment of limited complexity. Over time, they grew in sophistication to include PID (proportional, integral, differential) control capabilities for unit processes across a wide range of industries, and became a vital component of major manufacturing facilities worldwide.

Despite the number of vendors that provided PLCs and the variety of applications they supported, all PLCs shared a common internal architectural feature called an “image register,” which is a section of memory that contains the process and state variables representing the complete status of the machine at any moment. Even though there were initially no industry standards that dictated the exact structure of an image register, they were similar enough that a basic PLC-specific driver was sufficient to map any PLC’s image register into the standard widgets of a dashboard-style operator interface, providing real-time display of process status and sometimes interactive control capabilities. One of the most successful such packages was the Wonderware InTouch software product, shown below in a batch process context.

EDAModels5.3.png

Until recently, the lack of standardization in the embedded control system architectures for semiconductor manufacturing equipment made the implementation of equipment-oriented factory-level dashboards fairly challenging. However, with the advent of the SEMI EDA (Equipment Data Acquisition) standards and, in particular, the increasing fidelity of the equipment models required by these standards, all that has changed. Especially for equipment suppliers who follow the SEMI E164 (EDA Common Metadata) standard, the structure and content of the embedded equipment model are sufficient to provide direct access to most of the parameters and events you’d expect to find in a dashboard. Displaying some equipment KPI's, such as OEE, may require a little additional calculation and perhaps some minimal user input, but the most of information needed to compute these metrics is readily available.

For example, if you want to see the list of jobs active on a piece of equipment, look no further than the JobManager logical element of the metadata model (see below*).

EDAModels5.4.png

If you want to display the material status of a piece of equipment—for example the carriers, lots, and substrates that are present—the MaterialManager logical element contains all of this information.

EDAModels5.5.png

To display the current performance status and recent history of the major equipment modules, use the state information and reason codes in the SEMI E116 (Equipment Performance Tracking) EPTTracker logical elements to achieve this objective.

EDAModels5.6.png

Recipe execution status information for each module capable of processing material is found in the ModuleProcess state machine within the relevant Process Chamber.

EDAModels5.7.png

And finally, if you want to show the current operations status of the equipment as a whole, this information is found in the GEM variables present in the metadata model.

EDAModels5.8.png

You can see from the above examples that despite the lack of standardization in the embedded equipment controller architectures across the semiconductor industry, the information needed in equipment level dashboards is directly provided by the industry standards that define the EDA interfaces. This provides yet another use case for factories to drive for the adoption of these standards.

In addition to the standardized data access, another feature of EDA that makes it ideal for dashboard implementation is its multi-client capability. The software implementing a factory-level dashboard can communicate with many pieces of equipment at once, since the data volume required from any single equipment is small. From the equipment point of view, the dashboard system would appear as a separate client from the other application client(s) with more intense data collection requirements. This separation of clients also means that the dashboard content can be changed easily, since this is accomplished by modifying the relevant DCPs (data collection plans) rather than changing the data collection application itself.

Last but not least, since SEMI E164 standardizes the actual event and parameter names in the metadata model, the DCPs that collect this information can be programmatically generated and activated for all the equipment that is E164-compliant. This represents a significant engineering cost reduction over the conventional methods used to identify, collect, and manage the information required to animate a real-time dashboard.

This article is the fifth in the series recently announced in the Models in Smart Manufacturing Series Introduction posting – be sure to watch for at least one more posting that wraps up this overall theme.

We look forward to your feedback and to sharing the Smart Manufacturing journey with you.

 

*The visualizations of equipment metadata model fragments are those produced by the Cimetrix ECCE Plus product (EDA Client Connection Emulator).

Topics: Equipment Models, Industry 4.0, Smart Manufacturing

Cimetrix International, Inc., Taiwan Branch美商矽美科國際股份有限公司台灣分公司

Posted by Michael Lee; Country Manager Taiwan on Jun 14, 2017 11:30:00 AM

Michael Lee of Cimetrix announces the Taiwan Office Opening. Read now in Chinese or English.

當工廠的產品需要加入更多的功能,交期需要更迅速,工資需要提高,智慧製造提供了一個最好的解決方案。美商矽美科所提供的工廠自動化軟體,提升了聯繫工廠主機與設備控制在半導體、電子組裝、太陽能模組、發光二極體等相關的電子產業。我們在工業界領先的產品,給予客戶用較低的成本、客制化生產、迅速上市,並集中在成功實行工具控制與SEMI標準。

我很榮幸在今年二月進入美商矽美科。我們和知名的半導體廠商、印刷電路板商、設備商、機器人製造商等客戶合作,而這些公司給予我們最佳的評價。矽美科帶給他們一個極為經濟、有效率和聯繫良好的方案。我們提供了CIMConnect、 HostConnect、 EDA等產品來滿足廠商不同的需求。

Cimetrix Diagram

矽美科台灣辦公室將在5月31日開幕。我們感謝我們的客戶跟合作夥伴。我們將帶給你更方便、更熱情的服務,並展望在台灣及中國服務更多半導體、電路板和面板廠商。 

台灣銷售辦事處:

Cimetrix International, Inc., Taiwan Branch
美商矽美科國際股份有限公司台灣分公司4F., No.301,
Sec. 2, Tiding Blvd,
Taipei 114, Taiwan, R.O.C.
中華民國台灣台北市堤頂大道二段301號4樓 114

電話: +886-926395649
聯絡人:Michael Lee


When it comes to adding product functionality, shortening delivery time, or increasing wages, smart manufacturing provides the best solution. Cimetrix provides factory automation software which increases host connectivity and equipment control for semiconductor, electronics assembly, photovoltaic, LED, and related electronics industries. Our industry-leading products focus on successful implementation of tool control and SEMI connectivity standards to enable faster time-to-market, increased customization, and decreased total cost of ownership.

I was honored to join the Cimetrix team in February earlier this year. We work with major semiconductor companies, PCB manufacturers, equipment vendors, robotics specialists and more. I was happy to know that everyone I've worked with has high praise for this company.  Cimetrix can bring their customers and clients connected products that are efficient and cost-effective. Cimetrix offers a large portfolio of products such as CIMConnect, HostConnect, and EDA to meet the various needs of their customers.

blog diagram.png

The Cimetrix International, Inc., Taiwan Branch officially opened on May 31, 2017. Thanks to all our partners and customers. We hope to continue to bring you convenient and passionate service. I am looking forward to working with all our current and future customers in Taiwan and China! 

Contact Us:
Cimetrix International, Inc., Taiwan Branch
4F., No. 301,
Sec. 2, Tiding Blvd,
Taipei 114, Taiwan, R.O.C.

Phone: +886-926395649
Contact: Michael Lee

Topics: Working at Cimetrix, Announcements, Global Services, Smart Manufacturing

Models in Smart Manufacturing Series – Introduction

Posted by Alan Weber: Vice President, New Product Innovations on Mar 24, 2017 11:30:00 AM

As a child I was an avid model builder—airplane models, trains, engines, cars, ships, even monsters (anyone remember “The Visible V8” and “The Creature”?)—anything I could get my hands on. At the time I didn’t reflect on the source of this fascination, but with the benefit of hindsight, it is clear that these models provided an interactive, tangible way to visualize, explore, understand, and enjoy the topics that were interesting to me. It was a way to enrich an otherwise intellectual activity.

Visible_V8.pngCreature.png

In fact, when Hurricane Carla ravaged the Texas coast and cut our electricity for 3 days, one of our luckier neighbors snaked an extension cord over the fence, which provided just enough power to run the refrigerator, a small black-and-white TV, and… you guessed it… my electric train. 

Model_train.png

More than four decades later, I still enjoy working with models, but in the high-tech manufacturing domain, they often operate in the reverse direction, providing a logical way to interact with and understand physical entities, like materials, fixtures, processes, devices, components, equipment, and entire systems. And as important as various model types have been throughout the relatively brief history of the semiconductor industry, they are increasingly an integral part of the “Smart Manufacturing” initiative that is sweeping a wide range of industries worldwide. 

The focus of my next few blog posts will be the specific models that are inherent in the communications interface definitions for manufacturing equipment, subsystems, and other devices that are expected to cooperate over the [Industrial] Internet of Things. Our first post in this domain almost a year ago introduced the notion that the metadata models called for in the latest generation of SEMI Equipment Data Acquisition (EDA) standards were already directly aligned with the Industry 4.0/Smart Manufacturing vision. This series goes into much more detail, showing how specific sections of the equipment models in the GEM and EDA standards directly support many of the factory monitoring, analysis and control applications that are essential for running a Smart Manufacturing enterprise (see Substrate Management example below).

substrate_management.png

Moreover, to the extent that the structure and content of these models can truly be standardized, their associated applications can be process- and supplier-independent, greatly reducing the development and support costs for the factory IT departments while providing useful capabilities for the production engineering and operations stakeholders.

To get a feel for the overall direction of this series, download the presentation "The Role of Models in Semiconductor Smart Manufacturing",  along with the transcript,  from the APC Conference held last October in Phoenix. Then watch for subsequent postings that address specific applications, from productivity (OEE) monitoring, material tracking, product traceability, process execution monitoring, and beyond.

We look forward to your feedback and to sharing the Smart Manufacturing journey with you.

Topics: Equipment Models, Industry 4.0, Smart Manufacturing