Semiconductor Industry News, Trends, and Technology, and SEMI Standards Updates

Semiconductor

Fall 2016 SEMI Standards Meeting

Posted by Brian Rubow: Director of Client Training and Support

Jan 18, 2017 11:30:00 AM

SEMI_logo_share.jpg SEMI North America Information & Control Task Force and Committee fall meetings were last held at SEMI headquarters November 7 through 9, 2016. During these meetings, SEMI announced that they are relocating their headquarters to Milpitas, CA. That move is currently underway. In the GEM 300 task force, all of the ballots failed to pass. This include ballot 5872A, 5549, 6026, 6066, and 6068. In the DDA task force, ballot 6064 also failed.

Ballot 5872A is work driven by Cimetrix to complete to work initially proposed for the E172 standard SEDD files, a feature to enable an electronic format for GEM documentation. Ballot 5872A failed due to some minor issues. SEDD files already provide partial GEM interface documentation in an XML file by listing the data variables, status variables, equipment constants, collection events and alarms. The ballot proposes to enhance SEDD files by adding a list of supported SECS-II messages, remote commands, SEMI standards (with compliance tables), and default event reports. The ballot will be reworked and resubmitted as ballot 5872B.

 Ballot 5549A is a title change and organizational change to the GEM E30 standard. Several years ago, SEMI required all standards to have an official designation, such as Guide or Specification. E30 currently has a title that fails to establish an official standard designation. Additionally, the standard currently fails to have the mandatory sections “Purpose”, “Scope”, “Limitations” like other standards. The ballot was delayed several years due to the SML copyright claim by Peer Group and the ensuing legal confrontation with SEMI. The ballot was finally submitted in 2016 and failed because it renamed the Application Notes as an Appendix instead of “Related Information”. Additionally, there was some confusion because the ballot was based on the 0611 version of E30 rather than the 0416 version which had just been published. This ballot will be reworked and resubmitted as ballot 5549B.

 Ballots 6026, 6066, 6068 and 6024 are reapproval ballots for standards E109, E130/E130.1, E116/E116.1 and E121. SEMI automatically submits all standards for re-approval every five years if a standard has not been revised. These standards all failed due to outdated references. They will all be resubmitted in 2017 with minor changes to correct the outdated references.

 The new GUI task force was approved to create a new major revision of the E95 standard. In particular, the new revision will accommodate new software and hardware technology when laying out equipment user interfaces.

 Cimetrix proposed a new activity to define new SECS-II messages for transferring recipes. The activity will result in a new ballot 6614. Currently, the GEM standard defines two ways to transfer unformatted recipes. Using simple Stream 7 messages S7F3 and S7F6, the entire recipe is part of a single message. This makes is really easy to implement in the host and equipment GEM software, but recipes are limited to about 16.7 MB (the maximum size of a single data item in any SECS-II message). The second way is using the large recipe scenarios which involve using a sequence of messages S7F43/F44, S13F1/S13F2, S13F3/F4, S13F5/F6 (repeated iteratively until there is an error), S6F11/F12 and finally S13F7/F8. Even for an expert, this is very complicated. Ballot 6614 will propose simple new messages for transferring a large recipe using a single message where the recipe can be broken up into multiple parts where each part is up to 16.7 MB in size. If approved, another ballot will attempt to add this to GEM standard. This will open the door for the GEM standard to be used more effectively and in more application where the 16.7 MB limitation posed an issue.

 Japan Information & Control committee (I&CC) announced the official withdrawal of OBEM standards E98 and E98.1. Japan also announced a GEM300A initiative which includes standards E170 and E171 and E174. E170 is the Production Recipe Standard which allows equipment to designate production and non-production recipes; where production recipes are given change protection. E171 defines predictive carrier logistics. Ballot 5601 defines Wafer Job Management. It is not clear whether or not there any IC makers will demand any of these newer standards. Of the three, E170 seems to be most useful and interesting. Predictive carrier logistics seems to be useful only for equipment that have carrier internal buffers. It attempts to help the equipment report when carriers will be ready for removal. It is not clear how E171 will compete with the upcoming E87 ballot 4946 to be submitted by the Korean Information & Control Committee in 2017. Ballot 4946 modified the E87 standard to predict when carriers will be ready to unload. Wafer Job Management is a controversial standard. Japan I&CC announced the passing of ballot 5601 (now E174) despite the strong opposition by multiple knowledgeable voters in other regions, and despite very underwhelming support from regional leaders in North America, Korea, Europe and Taiwan.

 Korean Information & Control committee announced plans to submit ballot 5832, a proposal for a new Generic Counter standard which is built upon the GEM standard. The standard would allow an equipment to define various types of generic “counters” that can be reset by the host. The counters could be used a wide variety of applications; particularly predictive maintenance. The standard as defined in the current ballot defines digital counters, analog counters and collection event counters. Voting period for this ballot just ended recently.

 Next North American I&CC meetings will be held first week in April, 2017.

Topics: SEMI Standards, Semiconductor Industry, SEMI

News You Can Use in SEMI Command and Control Standards, Part 2

Posted by Brian Rubow and Alan Weber

May 31, 2016 1:00:00 PM

 172SEMI.pngIn a previous blog we mentioned that two new SEMI standards, E172 and E173, demonstrated that the GEM standard was alive and well and even gaining new momentum by evolving to adopt new technology. The earlier blog focused on E172 with its SEDD files that use an XML schema to describe what is in a GEM interface. Today’s blog is about the E173 Specification for XML SECS-II Message Notation: a new way to log and document GEM/SECS messages, again using an XML schema.

A few years ago Cimetrix was involved in a project prototyping Wait Time Waste concepts and implementation alternatives. This work required Cimetrix engineers to review and extract data from many different SECS-II message log files from a variety of sources, and in the process, exposed a serious weakness in the industry. Because there was no standardized notation for logging SECS-II messages, everyone represented them differently, using different nuances and variations in their notation based loosely on SML (SECS Message Language, which is mentioned in the GEM standard). Additionally, SML itself was designed primarily for human readability, and certainly not for consumption by software programs; moreover, you can’t analyze a long message log without software to do the parsing for you. As a consequence, writing software to review the log files and to extract meaningful data from the log files was far more difficult than it should have been – SML and SML-like notations are simply not suitable for today’s needs. But now there is a suitable, industry-standard alternative. 

At Cimetrix we have utilized various notations for logging SECS-II messages for many years. In order for any notation to be useful it must meet certain criteria. First of all, it has to be easy for software to write (serialize). Secondly, it also needs to be easy for software to read (deserialize). And finally, it should be easy for humans to read and understand.

The original technique we used many years ago was based on the scripting language Tcl (pronounced “tickle”), which uses curly braces as structural delimiters. When programming within the Tcl language, this works very well. In other programming languages, however, it is easy to serialize, but not so easy to deserialize. Another technique Cimetrix had used for a few years was based on XML, which is well supported by all modern programming languages and an integral part of most internet activity. It is very easy to serialize and deserialize. And when formatted with carriage returns and indentation, it is quite easy to read for most humans (at least the ones who are software programmers or web page gurus).

Here is a subjective comparison between the notation alternatives using a scale of 1 to 5 where 5 is excellent and 1 is very poor or difficult.

173_2.png

At Cimetrix we decided to leverage our experience with XML, SECS/GEM standards and the SEMI Standards organization and related communities to develop a notation that everyone in the industry could benefit from. The result was this new standard: SMN. It is comprised of two parts: an XML schema defined specifically for GEM/SECS messaging; and a specification document describing how to use it (although many details of the specification are embedded as annotations within the XML schema file itself). It looks like this:

173_1.png

The schema is found on the SEMI website: http://dom.semi.org/web/wstandards.nsf/complementaryfiles

SMN brings the representation of SECS messages into the Internet era by defining an open, standard, XML-based notation for these messages. So what can you do with this? Here are some ideas:

  • Document individual SECS/GEM messages (the SEMI E172 SEDD file uses SMN for this). You can also document entire message scenarios.

  • Log individual SECS/GEM messages or scenarios in XML format. These can include only the messages, or might also include protocol messages (like the HSMS separate message).

  • Share message logs with others. If their software supports SMN, they can immediately make use of it. This should increase collaboration in the manufacturing community, particularly between equipment suppliers and their customers.

  • Embellish log files with comments and meaningful metadata, like data item names, variable names, collection event names, etc.

  • Analyze and extract information from log files offline for projects like Wait Time Waste, where you don’t need to process a live data stream.

  • Log messages in a raw binary format to save disk space, yet encapsulated in XML for convenience.

  • Many of the numerous XML tools in the software development community can now be used by SECS/GEM software developers. This opens up a world of opportunities.

  • Products like our CIMConnect and CIM300 can make use of SMN to make it easier to implement GEM and GEM300 interfaces on the equipment by using the SECSData element from SMN to pass data from the equipment supplier’s software into our product.

It is exciting to see the GEM standard evolve and embrace new technologies like XML to make integrating manufacturing equipment into the factories easier and easier.

For more information about these latest standards, and how you can incorporate them into your interface implementation, please contact us.

Topics: SEMI Standards, SECS/GEM, SEMI

News You Can Use in SEMI Command and Control Standards

Posted by Brian Rubow and Alan Weber

May 24, 2016 1:00:00 PM

172SEMI.png

As the SEMI GEM standard celebrates its 25th birthday, you may have thought its evolution had just about run its course — but you’d be wrong. Last year, the Information and Control Committee of SEMI Standards passed two new standards that enhance the usability of the entire SECS/GEM suite of standards for equipment suppliers and semiconductor manufacturers alike: E172 SEDD and E173 SMN.

Let us talk about the first of these, the E172 Specification for the SECS Equipment Data Dictionary (SEDD) and postpone E173 Specification for XML SECS-II Message Notation (SMN) discussion for another blog. SEDD standardizes the approach for documenting an equipment’s GEM interface in a way that is both human- and computer-readable. All factories in every industry that use GEM require their equipment suppliers to provide GEM interface documentation in some electronic form for each type of equipment. This is because the GEM interface on every equipment type is unique, supporting unique features and publishing a unique set of data. Of course, the GEM standard itself requires documentation and what has to be in the documentation but does not specify how this is to be accomplished. Until now there has been no common approach or format. This has always left the equipment suppliers to come up with their own format. At best this might be in a multiple-tabbed Excel spreadsheet or a PDF file; and at worst a text document that might or might not have been accurate or even complete. And every equipment supplier completes the documentation in a different structure and style so that no two GEM documents look the same. In summary, everyone is trying to complete this GEM and factory requirement by providing documentation, but in the end what factories are receiving has to be consumed and digested differently based on the equipment supplier, and sometimes even based on the specific equipment type from the same equipment supplier. It is a lot of work for the factory just to understand exactly what is in each GEM interface.

SEDD was created to solve this problem by defining a standard XML schema for documenting a GEM interface. Equipment suppliers create an XML file that complies with the SEDD XML schema to document the GEM interface and then deliver this XML file (called an SEDD file) to the factory.

Why XML? Because XML is the perfect technology for organizing data into a uniform structure that is well supported by modern programming languages. This means that equipment suppliers can use a software program to generate the SEDD file. It also means that factories can write software to read and view the SEDD file. Moreover, they can create intelligent host applications that automatically configure themselves and adapt to a specific GEM interface.

So what’s in an SEDD file? Below is a visual representation of the SEDD file schema, identifying the major elements of the SEDD file.

172Picture1.pngSo essentially the SEDD file includes a list of the data available for collection by a host, some general information about the equipment (in the header), and the format of the data variables, status variables and equipment constants. As an example of what details are included, here are the details for collection events.

As an example, for a collection event, the SEDD file includes a list of all collection events available, and the ID, name, description, related SEMI standard, and the list of related data variables and other variables for that collection event. This is everything you need to use a collection event.

172Picture2.png

So far this is a summary of what is available today in a SEDD file. Cimetrix is leading the GEM300 task to extend the SEDD file to include additional information. This work is in SEMI ballot 5872 that proposes to extend the SEDD file to also include:

  • A list of supported SECS-II messages and the acceptable format for each message (using E172 SMN)

  • A list of support remote commands and available parameters for each remote command

  • A list compliance tables for supported SEMI standards

  • The list of predefined event reports

This is all work that was postponed from the original SEDD standard development. Hopefully ballot 5872 will pass and make SEDD files even more useful. With this additional information an SEDD file would empower GEM host software to configure itself to fully communicate with a GEM interface and make all of the features in the GEM interface available.

This is one example of how GEM technology just keeps getting better. It is not surprising that GEM is getting used in more and more industries.

For more information about this latest standard, and how you can incorporate it into your interface implementation, please contact us.

Topics: SEMI Standards, SECS/GEM, SEMI

European Advanced Process Control and Manufacturing Conference XVI in Review

Posted by Alan Weber: Vice President, New Product Innovations

Apr 19, 2016 2:01:05 PM

APC1.png

APC2.png

Cimetrix participated in the recent European Advanced Process Control and Manufacturing (apc|m) Conference, along with more than 130 control professionals across the European and global semiconductor manufacturing industry. The conference was held in Reutlingen, Germany, a picturesque city of stone and half-timber buildings just south of Stuttgart.

APC3.png

This conference, now in its 16th year, is one of only a few global events dedicated to the domain of semiconductor process control and directly supporting technologies. The conference’s attendance this year was comparable in numbers and demographics to that of the previous two years, a clear indication that this area continues to hold keen interest for the European high-tech manufacturing community. Another highlight this year was the sponsorship of Bosch, a relative newcomer to the conference but a pillar of the German manufacturing industry. Reutlingen is home to Bosch’s automotive electronics division and its related semiconductor manufacturing facilities, so they were very well represented in the conference and excellent hosts!

Cimetrix was privileged to make two presentations at this year's conference. The first was entitled “Data Fusion at the Source: Standards and Technologies for Seamless Sensor Integration,” authored and delivered by myself. The external sensor integration and related data unification topics have enjoyed increasing interest over the past year, and even though the techniques outlined in the presentation leverage the latest versions of the Equipment Data Acquisition (EDA)/Interface A standards, they apply equally well for the 200mm manufacturing nodes prevalent in European wafer fabs and assembly/test factories. The solution architecture is shown in the slide below, but for the background and rationale behind this approach, feel free to download a copy of the entire presentation from our website by clicking on the link below.

APC4.png

  Download the Presentation

APC5.png

The second presentation, entitled “'Smart Manufacturing' solutions for high-mix manufacturing using Wait-Time-Waste improvement opportunities” was authored by Jan Driessen, a Principal Industrial Engineer with NXP Semiconductor in the Netherlands. It summarized the work of a project team from six companies and as many countries, and funded by the European Union's “integrate” program (cover page is on the left). Because of an unexpected work conflict during the conference, however, Jan was unable to attend, and, based on our companies’ shared interest in the Wait-Time-Waste technology and standards over the past several years, he thought that Cimetrix would be well qualified to give his presentation. I willingly agreed, worked with Jan to make sure I understood the latest material, and made the presentation. It essentially makes a compelling case for using equipment event data in a legacy 200mm fab to improve OEE, operational effectiveness, and factory capacity through a “chain of data operations” paradigm that he explains in some detail. The good news for 300mm fabs is that these same results can even more readily be achieved, because the availability and fidelity of the event data is much higher, especially if the fab has a full GEM300/EDA E164-compliant system infrastructure. For more information, request a copy of this presentation directly from Jan Driessen at jan.p.driessen@nxp.com.

Other themes that were evident at the conference included 1) applications of APC and supporting metrology techniques for structures found in smart sensors, MEMS devices, LEDs, and other semiconductor products outside the traditional processor and memory segments; 2) increasing emphasis on equipment data collection in the back end to support productivity monitoring and control applications; 3) unit process control for a number of equipment types; and 4) an entire session devoted to industrial engineering topics.

As with other similar conferences around the globe, the takeaway for Cimetrix is that “Smart Manufacturing,” Industrie 4.0, the Industrial Internet of Things (IIoT), advanced process control and fault detection applications, “big data” analytics, and a host of other high-tech manufacturing technologies all depend on the ability to get the right data at the right time from the right sources on the factory floor, and then make it available wherever and whenever needed… For more information about how Cimetrix’s product families that directly address this “sweet spot,” please contact us.

Topics: SEMI Standards, Interface A, EDA, Events, Data

Seminar to Prepare South Korean Companies for Samsung EDA Pilot Hosted in Suwon City, South Korea

Posted by David P. Faulkner: Executive Vice President, Sales and Marketing

Apr 7, 2016 1:00:00 PM

EDA_Seminar.jpeg

On March 30, 2016, Linkgenesis and Cimetrix hosted an Equipment Data Acquisition (EDA) standards seminar in Suwon City, South Korea to introduce equipment suppliers, sub fab component suppliers and system integrators to the concepts, history and best practices involving the SEMI EDA standards, also known as Interface A. The seminar was in response to Samsung’s EDA pilot targeted for Line 17 in Hwaseong with further rollout in Pyeoungtaek. While Interface A is being adopted in the US, Europe, Japan, and Taiwan; this is the first usage in South Korea. Recognizing this, Linkgenesis used their strong contact base in the South Korean semiconductor industry to bring together the major fab suppliers to share knowledge about EDA and demonstrate how Linkgenesis and Cimetrix can help them meet Samsung’s requirements.

The agenda was:

  1. Introductions by Sungwoo Jung, CEO Linkgenesis and Eric Ko, Sales General Manager

  2. EDA SEMI Standards Overview by Inhyeok Paek, Managing Director Research and Development Center

  3. EDA Industry and Market Trends by Dave Faulkner, Cimetrix Executive Vice President

  4. Factory Use Cases for EDA by Brian Rubow, Cimetrix Director of Client Training and Support (and co-chair of SEMI North American DDA Task Force)

  5. Best Practices in EDA Implementations by Brian Rubow

  6. CIMPortal Plus Feature Overview by Brian Rubow

  7. Development Steps Using CIMPortal Plus by Mingyu Chung, Linkgenesis Principal Engineer

  8. Question and Answer Period

With over 70 attendees, the Q&A session was lively with many good questions and exchange of ideas. Action items and next steps have been established with the attendees as everyone involved is working toward helping the Samsung pilot be successful.


If you would like to learn more about the application of the SEMI EDA/Interface A standards, click here for 10 in-depth videos on EDA technology. You can also download a white paper on the SEMI EDA/Interface A standards here.

Topics: SEMI Standards, Interface A, EDA, Doing Business with Cimetrix

SEMICON Korea Proves to Be a Fruitful Business Opportunity for Cimetrix as it Moves into this New Market

Posted by David P. Faulkner: Executive Vice President, Sales and Marketing

Feb 5, 2016 2:00:00 PM

Korea5.jpegKorea4.jpgKorea2.jpegKorea1.jpegKorea3.jpegCimetrix and our new distribution partner, Linkgenesis, participated in a joint booth at SEMICON Korea last week in Seoul. With over four exhibit halls located in the COEX Convention and Exhibition Center, SEMICON Korea is the largest SEMICON in terms of number of visitors—about 40,000—and included over 1,870 booths in 36,000 sq. meters of show space. The theme of the show was “Connect to Future, Market, People and Technology” with keynote speakers from leaders at Synopsys, Texas Instruments, and Audi. The show was co-located with LED Korea. Included in the schedule was also a meeting for the Information and Control Technical Committee, Korea Chapter, to work on SEMI standards.

Korea remains the second largest equipment market for the second year in a row, and represents the largest region of installed 300mm fab capacity in the world. This show has more equipment manufacturers, in my opinion, than most SEMICON shows. So, because of the show’s location, it made it an ideal opportunity for us to meet with our current worldwide equipment manufacturing customers who seemed to be present in every row, and to meet the growing list of Korean equipment manufacturers as they build volume and increase their expertise. We already have several customers in Korea and expect this number to grow over the next few years.

Our new partnership with Linkgenesis was founded on providing EDA/Interface A solutions in Korea; currently Samsung and Hynix are both looking at incorporating this technology into their manufacturing systems. As the world leader in EDA/Interface A, Cimetrix can provide superior expertise to make the adoption process efficient and successful. Linkgenesis already has business with most Korean equipment manufacturers, so, by combining forces, we bring strong local engineering support together with our world-class EDA solution, CIMPortal™ Plus.

To accelerate our penetration into Korea, we have hired Mr. Hwal Song (+82 (0) 10-5058-0895) as our Korean General Manager to accelerate our customer introductions and partnership with Linkgenesis. Song has a long history in the semiconductor software industry.

We met with several new potential customers during the show setting a strong foundation for our continued growth in the Korean market. We left the show feeling very positive about Cimetrix’ entry into Korea.

At the Information and Control Technical Committee meeting, David Francis, Director of Product Management, represented Cimetrix. In the meeting there was an introduction to work being done by SEMI Japan related to Role Based Access Control (RBAC); however, this effort is still under development by the Japan Task Force. The North America DDA Task Force is starting discussions about Freeze 3 of the EDA Standards. Tom Salmon, Vice President Global Member Services and Standards, introduced information about the SEMI Automation Technology Committee that is working on the Smart Manufacturing initiate in support of efforts coming out of Industrie 4.0 and Industrial Internet Consortium. There was also an information share on the status of efforts around standards for Recipe Management Systems that address some of the concerns with the existing standards such as Recipe and Parameter Management (RaP).

SEMICON Korea 2016 as a whole was a success for both Cimetrix and the Korean semiconductor industry. Seoul was a great backdrop for the show and we look forward to returning next year with greater market penetration and the chance to catch-up with even more clients.

To be contacted about Cimetrix' CIMPortal Plus or any of our products and/or services, please click here.

Topics: SEMI Standards, Doing Business with Cimetrix, SEMICON

Manufacturing Applications for Leveraging a Factory-wide EDA Implementation

Posted by Alan Weber: Vice President, New Product Innovations

Dec 16, 2015 8:52:49 PM

In our November EDA-related blog, I covered highlights of the Factory System Infrastructure topic shown in the figure below, and emphasized the need to have a long-term architectural vision to guide the development of a scalable data collection and management environment. Today’s topic completes the picture by summarizing the kind of Manufacturing Applications that can leverage a factory-wide EDA implementation. Unlike infrastructure software alone, these applications are what really provide the ROI for the process engineers and other factory customers of the manufacturing IT department’s efforts, so it is important to understand the scope and requirements of these key applications early in the strategic planning process.

Automation_Strategy_Framework_Mfg_Apps.jpg

Even though Cimetrix is principally in the business of providing software products that enable equipment suppliers to provide data using EDA technology to the factory application developers that use the information in their production systems, we’ve been involved in this process for many years, and have a good idea of the dominant uses of this data to improve manufacturing Key Performance Indicators (KPIs). So in this blog, I’ll cover a little of the high-level picture of what applications fully leverage EDA data.

First and foremost, it is very easy to connect a basic EDA client to a piece of equipment, upload its metadata, and collect information about that tool’s behavior, so implementing a generic “quick-connect production monitor” independent from the fab-wide data collection system is a very common use for EDA. Moreover, if the model in the tool is compliant to the E164 (EDA Common Metadata) standard, you can make a lot of assumptions about the names of the modules, the wafers, the substrate locations, the process jobs, etc., since all of this information is standardized. As a result, you can quickly get an idea of what the equipment is doing, what recipes it is running, what wafers are being processed, and how well the tool is performing with no custom software whatsoever.

Once this is accomplished, the next step most process and equipment engineers take is to more fully characterize the tool’s behavior, so a very common use of EDA is simply improving equipment and process visibility. By inspecting the equipment model, you can see all the events and parameters that are available to be collected, plot them in Excel or on real-time strip charts, or pass them to other analysis applications.

After the equipment has been characterized, the first major production application most fabs will implement is multivariate fault detection (MVA FDC). This is actually the predominant application of EDA data in the industry to date, because in order to do well-architected fault detection applications, one must “frame” the trace data very carefully. High-speed data collection is usually only required in a small number of specific recipe steps after certain conditions have been established, so you can use EDA’s powerful event-based trace data collection to frame the precise data you want, and pass that on to the multivariate control and fault models.

Of course, once you understand a tool’s behavior and have good fault detection capability, you then start to use EDA data to compare tools across a fleet. You would normally want a set of similar equipment to behave in the same way, but perhaps you have one tool that performs exceptionally well, and you’re not quite sure why…In this case, you do what’s called a “golden run” analysis on that equipment, and compare the key trace variables in one with like variables in similar equipment to see where the differences are, and try to explain why those differences exist. Other names for this class of applications include chamber matching and tool matching.

Another key application that we’re starting to see significant interest in is external sensor integration. Factories are now starting to use EDA to present information collected from independent sensors alongside the information collected directly from the equipment. Sharing a common equipment model across these systems effectively “unifies” that data, so the downstream analysis applications believe the information was collected from a single, integrated source. The EDA metadata model offers an ideal way to accomplish this unification.  

Finally, in many advanced wafer fabs, it is important that substrates do not “sit around” after they’ve been processed. Minimizing inter-process wait times is especially important for some advanced processes, so knowing a priori—the precise moment that a lot is going to complete—is a critical capability so the material handling systems can be scheduled to pick up that material and take it to the next process. EDA provides an ideal way to make these predictions generically for multiple process types using the information that is required in the equipment model.

We’ll address these last two applications—external sensor integration and lot completion estimation—in more detail in later blog postings, but I wanted to get you thinking about these ideas early in the discussion of real EDA usage in semiconductor factories.

There are many more EDA application ideas and examples we could share at this point, from component fingerprinting to wait-time waste analysis to dynamic sampling for wafer-level feedback control to feature extraction for predictive maintenance…but these just scratch the surface of what factory customers will come up with once they experience firsthand the flexibility and power of EDA in their factories. More later as this creative process unfolds!

To schedule a time to discuss your EDA needs, click here to set-up a time to talk with one of our knowledgable experts.

Topics: SEMI Standards, Interface A, EDA, Doing Business with Cimetrix

Factory System Infrastructure Support Necessary for a Full-scale EDA Deployment

Posted by Alan Weber: Vice President, New Product Innovations

Nov 24, 2015 12:30:00 PM

In my October 27th blog, I wrote about the Equipment Automation topic shown in the figure below and stressed the importance of developing good equipment purchasing specifications from the outset to ensure the company’s manufacturing objectives can be met. Given the number of EDA pilot and production projects currently active across the industry, it’s likewise important to consider what kind of Factory System Infrastructure will be necessary to support a full-scale EDA deployment… so the purpose of this posting is to highlight this topic for the semiconductor manufacturing IT professionals who may face these challenges soon.

EDA2Pict2.pngHowever, before diving into a detailed design process for an EDA factory system, you must decide what overall system architecture will govern that design. A number of factors go into this decision, including 1) the functional requirements that distinguish EDA-based data collection from other more traditional approaches, 2) technology constraints of the existing factory systems, 3) budget limitations, 4) schedule requirements, and especially 5) the non-functional requirements (scalability, performance, reliability, ease-of-use, etc.) that often make the difference between success and failure of a given system.

Each of these factors deserves a thorough treatment of its own, but since we were invited to address this topic at a recent seminar sponsored by SEMI Taiwan, we’ve assembled an overview presentation entitled “Factory Systems Architectures for EDA” that you can use as a starting point. It not only covers in more depth the requirements above which drive key architectural decisions, but also suggests what some of the major architectural components of a production system would need to be, based on the experience Cimetrix has gained working with the earliest adopters of EDA across the semiconductor device maker and equipment supplier communities. These include provisions for handling the scores of equipment metadata models that will exist in a production facility, for creating and managing the thousands of data collection plans that are resident at the equipment instances themselves, for monitoring and maintaining the overall performance of a system with such inherent flexibility, and for a number of other examples. Finally, the presentation describes some high-level examples of architectural “styles” that have been implemented in the industry thus far.  

We sincerely hope you will download this presentation and its companion “The Power of E164: EDA Common Metadata” that was also presented at the SEMI Taiwan event, and contact us when you want to know more about any of these topics.

Topics: SEMI Standards, Interface A, EDA, Doing Business with Cimetrix, Data

SEMI Standards Meetings from the North American Information & Control Committee Forecasts the Direction of the Semiconductor Industry

Posted by Brian Rubow: Director of Client Training and Support

Sep 29, 2015 1:30:00 PM

During the week of SEMICON West in San Francisco this past July, the North American Information & Control Committee met to discuss and consider new and pending standards within the industry. SEMATECH was noticeably absent from the sessions. For many years, SEMATECH has been a leader in developing and promoting the GEM 300 and EDA standards.

Here are the highlights from those meetings and how they will effect you.

The DDA Task Force is in the early stages of planning a Freeze 3 version of the EDA (Interface A) standards. This may cause some concern—especially with OEMs—as some are just now getting their Freeze 1 interfaces accepted in Fabs. Freeze 2 was a big step forward in making the standards clearer and easier to adopt, but it required a lot of work to move from Freeze 1 to Freeze 2. The hope is that the transition from Freeze 2 to Freeze 3 will be easier, but there will be doubt and concern among many OEMs.

One of the changes proposed for Freeze 3 is replacing the usage of SSL (HTTP) with WS-Security, an extension to SOAP and a member of the web services specifications published by OASIS. This extension allows for secure data within a SOAP message, while still using HTTP for data transfer. This is really an underlying issue and should not affect the applications that would interface with our CIMPortal Plus product. It would allow for a secure connection between CIMPortal and the Fab client so that the data transmitted is protected from theft. There would be configuration changes required to allow the secure connection to be defined, but—once it is—the actual interaction between the OEM’s application and CIMPortal Plus should not change.

Another change being considered is the implementation of WS-ReliableMessaging, another extension to SOAP and also a member of the web services specifications published by OASIS. WS-ReliableMessaging describes a protocol that allows SOAP messages to be reliably delivered between distributed applications in the presence of software component, system, or network failures. Just as the WS-Security item above, this would be at the protocol level, an “under-the-hood” change. It should not affect the way applications interact with our product, but should provide for a more reliable connection to the host EDA client. Use of this extension could also allow EDA to be used in more factory applications, where guaranteed data acquisition is required.

The final issue that was discussed relating to Freeze 3 was a new high-frequency trace for collecting data at very high speeds triggered for short periods of time where the collected data is sent at the end of the collection period. For example, a 1 ms trace for 5 seconds where the 5,000 collected samples for each parameter would be sent at the end of the 5 second period. This change might require alterations in our products. This will help the data reporting be more efficient. Rather than reporting small individual pieces of data to the EDA client, this will allow many data samples to be sent together making for more efficient use of the network.

The GEM 300 Task Force had three ballots on hold due to the ongoing SML copyright legal trial between SEMI and The PEER Group. However, work on other pending ballots continued. The first, Ballot 5872, proposes to add new features to the E172 SEDD standard. E172 is a new standard that provides an XML schema for documenting a GEM/GEM 300 interface. Eventually, E172 can completely replace the current GEM documentation requirements.

Recipe Integrity ballot 5618 has an uncertain future since ISMI failed to pursue its development; unfortunately, the ballot had seemed very close to completion. This standard says that it will not require changes to SECS II messages, but simply clarifies what parameters are defined and how the existing pieces work together. So, essentially, it would be a standard that tells you how to use other existing standards.

Finally, the Task Force discussed enhancing the GEM 300 standards to handle equipment that bond substrates and divide substrates. This will affect E90 and could affect E40, E87, and E94 as well. These changes would likely require updates to CIM300. Right now the standards just address how to treat equipment where the same material (substrates or wafers) go in and out. Traditional material tracking assumes one wafer in, get processed, then return to an output carrier. In the proposed case, either two wafers go in and one unit comes out, or one substrate goes in and two come out

The committee is scheduled to next meet in November, so you can plan on seeing another post from me on the outcome of those meetings afterwards. Subscribe to our blog in the upper right corner of this page to be sure not to miss that or any of my future updates on the North American Information & Control Committee.

Topics: SEMI Standards, SEMI, Interface A, EDA, SEMICON West

EDA Standards Seeing Increasing Adoption Across the Industry

Posted by Alan Weber: Vice President, New Product Innovations

Sep 22, 2015 9:19:21 PM

As mentioned briefly in a previous posting, the adoption momentum for the SEMI EDA (Equipment Data Acquisition) suite of standards has picked up noticeably over the past 6 months, and a number of pilot projects are now underway at leading chip makers across the industry, especially in Asia. As these projects bear fruit, we expect to see explicit requirements for EDA interface capability in the purchase specifications of many more fabs in the coming months. But that’s just a start.

The early adopters of these standards who have now accumulated years of production experience clearly understand that the key to realizing the full manufacturing benefit of this technology lies in the structure and content of the equipment metadata models, which to date have been largely determined by the equipment suppliers themselves. The resulting diversity of EDA implementations is reminiscent of the situation that existed in the days before GEM, when every chip maker required their own particular “dialect” of SECS-II, and the equipment suppliers had to support a custom interface for each customer… not a pretty picture.

Luckily, the standards community recognized this problem early on, and addressed it via the Specification for EDA Common Metadata (SEMI E164). This standard effectively unifies the equipment models across the fab, regardless of process type or supplier, enabling the factory software developers to create generic manufacturing applications that “plug and play” with the equipment to address the problems that are common to all (status and productivity monitoring, material flow, resource utilization, etc.). 

EDA1.jpg

As a result, the next wave of factory implementations can directly leverage these lessons learned by requiring compliance to “Freeze 2, E164” level of the EDA standards suite, and focus their energies on new application development rather than supplier-specific custom integration software. Given the years of experience Cimetrix has dedicated both to the development of the EDA standards in the SEMI community and in providing product-based implementations on “both ends of the wire” (in other words, equipment and client/host side), we can support customers wherever they are in the implementation life cycle, from building awareness to initial purchase specification development to system architecture and application design to conformance and acceptance testing.

For more information about how we can help align your activities with this accelerating adoption process, please contact us… and stay tuned for more specifics on all the above!

For an introduction to EDA, download the presentation Interface A Overview: Characteristics, Benefits, and Applications.

Topics: SEMI Standards, Semiconductor Industry, SEMI, Market Trends, Interface A, EDA

Receive Email Updates

Follow Us

Learn More About the
SEMI Standards

SECS/GEM

GEM 300

Interface A/EDA

PV2 (PVECI)